
strlcpy() and strlcat() 1
ID: 487-BSI | Version: 8 | Date: 11/14/08 4:52:57 PM

strlcpy() and strlcat()
Daniel Plakosh, Software Engineering Institute [vita1]

Copyright © 2005, 2008 Pearson Education, Inc.

2006-01-30; Updated 2008-10-06 L3 / D/P, L2

The standard C library includes functions that are designed to prevent buffer overflows, particularly
strncpy() and strncat(). These universally available functions discard data larger than the specified
length, regardless of whether it fits into the buffer. These functions are deprecated for new Windows code
because they are frequently used incorrectly.

Development Context
Copying and concatenating character strings

Technology Context
C, UNIX, FreeBSD, OpenBSD, NetBSD, MacOS X, Solaris

Attacks
Attacker executes arbitrary code on machine with permissions of compromised process or changes the
behavior of the program.

Risk
Improper use of the strncpy() and strncat() functions can result in buffer overflow vulnerabilities.

Description
The strlcpy() and strlcat() functions copy and concatenate strings in a less error-prone manner than
the corresponding C99 functions. These functions’ prototypes are as follows:

size_t strlcpy(char *dst, const char *src, size_t size);

size_t strlcat(char *dst, const char *src, size_t size);

The strlcpy() function copies the null-terminated string from src to dst (up to size characters). The
strlcat() function appends the null-terminated string src to the end of dst (but no more than size
characters will be in the destination).

To help prevent writing outside the bounds of the array, the strlcpy() and strlcat() functions accept
the full size of the destination string as a size parameter. For static buffers, this value is easily computed at
compile time using the sizeof() operator.

Both functions guarantee that the destination string is null terminated for all nonzero-length buffers.

The strlcpy() and strlcat() functions return the total length of the string they tried to create. For
strlcpy() that is simply the length of the source; for strlcat() it is the length of the destination
(before concatenation) plus the length of the source. To check for truncation, the programmer needs to verify
that the return value is less than the size parameter. If the resulting string is truncated, the programmer now
has the number of bytes needed to store the entire string and may reallocate and recopy.

1. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/268-BSI.html (Plakosh, Daniel)

http://buildsecurityin.us-cert.gov/bsi/about_us/authors/268-BSI.html
http://buildsecurityin.us-cert.gov/bsi/1084-BSI.html

strlcpy() and strlcat() 2
ID: 487-BSI | Version: 8 | Date: 11/14/08 4:52:57 PM

Neither strlcpy() nor strlcat() zero-fill their destination strings (other than the compulsory null
byte to terminate the string). This results in performance close to that of strcpy() and much better than
strncpy() [Miller 99].

Unfortunately, strlcpy() and strlcat() are not universally available in the standard libraries of
UNIX systems. Both functions are defined in string.h for many UNIX variants, including Solaris, but not
for GNU/Linux. Because these are relatively small functions, however, you can easily include them in your
own program's source whenever the underlying system doesn't provide them. It is still possible (however
unlikely) that the incorrect use of these functions will result in a buffer overflow if the specified buffer size is
longer than the actual buffer length.

References

[Miller 99] Miller, T. C. & de Raadt, T. "strlcpy and strlcat—
Consistent, Safe String Copy and Concatenation,"
175-178. Proceedings of the FREENIX Track,
1999 USENIX Annual Technical Conference.
Monterey, CA, June 6-11, 1999. Berkeley, CA:
USENIX Association, 1999. http://www.usenix.org/
publications/library/proceedings/usenix99/
full_papers/millert/millert.pdf.

Pearson Education, Inc. Copyright
This material is excerpted from Secure Coding in C and C++, by Robert C. Seacord, copyright © 2006 by

Pearson Education, Inc., published as a CERT® book in the SEI Series in Software Engineering. All rights
reserved. It is reprinted with permission and may not be further reproduced or distributed without the prior
written consent of Pearson Education, Inc.

